Animal temperature limits and ecological relevance: effects of size, activity and rates of change
1. Climate change is affecting species distributions and will increasingly do so. However, current understanding of which individuals and species are most likely to survive and why is poor. Knowledge of assemblage or community level effects is limited and the balance of mechanisms that are important over different time-scales is poorly described. Laboratory experiments on marine animals predominantly employ rates of change 10-100 000 times faster than climate induced oceanic warming. To address this failure we investigated differences in individual and species abilities to tolerate warming, and also how rate of warming affected survival.2. This study identifies community level effects of thermal biology by applying a multi-species, multi-trophic level approach to the analysis of temperature limits.3. Within species analyses of 14 species from 6 phyla showed smaller individuals survived to higher temperatures than large animals when temperatures were raised acutely. If this trend continues at slower warming rates, the early loss of larger individuals has marked consequences at the population level as larger individuals form the major reproductive component.4. Between species comparisons showed active species survived to higher temperatures than sessile or low activity groups. Thus active groups (e.g. predators) and juvenile or immature individuals should fare better in rapid warming scenarios. This would be expected to produce short-term ecological imbalances in warming events.5. The rate of warming markedly affected temperature limits in a wide range of Antarctic marine species. Different species survived to temperatures of 8.3-17.6 degrees C when temperatures were raised by around 1 degrees C day(-1). However they only survived to temperatures between 4.0 degrees C and 12.3 degrees C when temperatures were raised by around 1-2 degrees C week(-1), and temperatures of only 1.0-6.0 degrees C were tolerated for acclimations over periods of months.6. Current models predicting range changes of species in response to climate change are either correlative or mechanistic. Mechanistic models offer the potential to incorporate the ecophysiological adaptation and evolutionary processes which determine future responses and go beyond simple correlative approaches. These models depend on the incorporation of data on species capacities to resist and adapt to change. This study is an important step in the provision of such data from experimental manipulations.
Details
Publication status:
Published
Author(s):
Authors: Peck, Lloyd S., Clark, Melody S. ORCID record for Melody S. Clark, Morley, Simon A. ORCID record for Simon A. Morley, Massey, Alison, Rossetti, Helen
This website uses cookies to improve your experience. We'll assume you're okay with this, but you can opt-out if you wish.AcceptRead more
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.