Warm climate isotopic simulations: what do we learn about interglacial signals in Greenland ice cores?
Measurements of Last Interglacial stable water isotopes in ice cores show that central Greenland d18O
increased by at least 3& compared to present day. Attempting to quantify the Greenland interglacial
temperature change from these ice core measurements rests on our ability to interpret the stable water
isotope content of Greenland snow. Current orbitally driven interglacial simulations do not show d18O or
temperature rises of the correct magnitude, leading to difficulty in using only these experiments to
inform our understanding of higher interglacial d18O. Here, analysis of greenhouse gas warmed simulations
from two isotope-enabled general circulation models, in conjunction with a set of Last Interglacial
sea surface observations, indicates a possible explanation for the interglacial d18O rise. A reduction in the
winter time sea ice concentration around the northern half of Greenland, together with an increase in sea
surface temperatures over the same region, is found to be sufficient to drive a >3& interglacial
enrichment in central Greenland snow. Warm climate d18O and dD in precipitation falling on Greenland
are shown to be strongly influenced by local sea surface condition changes: local sea surface warming
and a shrunken sea ice extent increase the proportion of water vapour from local (isotopically enriched)
sources, compared to that from distal (isotopically depleted) sources. Precipitation intermittency
changes, under warmer conditions, leads to geographical variability in the d18O against temperature
gradients across Greenland. Little sea surface warming around the northern areas of Greenland leads to
low d18O against temperature gradients (0.1e0.3& per �C), whilst large sea surface warmings in these
regions leads to higher gradients (0.3e0.7& per �C). These gradients imply a wide possible range of
present day to interglacial temperature increases (4 to >10 �C). Thus, we find that uncertainty about local
interglacial sea surface conditions, rather than precipitation intermittency changes, may lead to the
largest uncertainties in interpreting temperature from Greenland ice cores. We find that interglacial sea
surface change observational records are currently insufficient to enable discrimination between these
different d18O against temperature gradients. In conclusion, further information on interglacial sea surface
temperatures and sea ice changes around northern Greenland should indicate whether þ5 �C during
the Last Interglacial is sufficient to drive the observed ice core d18O increase, or whether a larger temperature
increases or ice sheet changes are also required to explain the ice core observations.
Details
Publication status:
Published
Author(s):
Authors: Sime, Louise C. ORCID record for Louise C. Sime, Risi, Camille, Tindall, Julia C., Sjolte, Jesper, Wolff, Eric W., Masson-Delmotte, Valérie, Capron, Emilie ORCID record for Emilie Capron
This website uses cookies to improve your experience. We'll assume you're okay with this, but you can opt-out if you wish.AcceptRead more
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.