Tidal modulation of buoyant flow and basal melt beneath Petermann Gletscher Ice Shelf, Greenland.
A set of collocated, in situ oceanographic and glaciological measurements from Petermann Gletscher Ice Shelf, Greenland, provides insights into the dynamics of under‐ice flow driving basal melting. At a site 16 km seaward of the grounding line within a longitudinal basal channel, two conductivity‐temperature (CT) sensors beneath the ice base and a phase‐sensitive radar on the ice surface were used to monitor the coupled ice shelf‐ocean system. A six month time series spanning August 23, 2015 to February 12, 2016 exhibited two distinct periods of ice‐ocean interactions. Between August and December, radar‐derived basal melt rates featured fortnightly peaks of ~15 m yr‐1 which preceded the arrival of cold and fresh pulses in the ocean that had high concentrations of subglacial runoff and glacial meltwater. Estimated current speeds reached 0.20‐0.40 m s‐1 during these pulses, consistent with a strengthened meltwater plume from freshwater enrichment. Such signals did not occur between December and February, when ice‐ocean interactions instead varied at principal diurnal and semidiurnal tidal frequencies, and lower melt rates and current speeds prevailed. A combination of estimated current speeds and meltwater concentrations from the two CT sensors yields estimates of subglacial runoff and glacial meltwater volume fluxes that vary between 10 and 80 m3 s‐1 during the ocean pulses. Area‐average upstream ice shelf melt rates from these fluxes are up to 170 m yr‐1, revealing that these strengthened plumes had already driven their most intense melting before arriving at the study site.
Details
Publication status:
Published
Author(s):
Authors: Washam, Peter, Nicholls, Keith ORCID record for Keith Nicholls, Muenchow, Andreas, Padman, Laurie
This website uses cookies to improve your experience. We'll assume you're okay with this, but you can opt-out if you wish.AcceptRead more
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.