The role of meltwater advection in the formulation of conservative boundary conditions at an ice-ocean interface
Upper boundary conditions for numerical models of the ocean are conventionally formulated under the premise that the boundary is a material surface. In the presence of an ice cover, such an assumption can lead to nonconservative equations for temperature, salinity, and other tracers. The problem arises because conditions at the ice–ocean interface differ from those in the water beneath. Advection of water with interfacial properties into the interior of the ocean therefore constitutes a tracer flux, neglect of which induces a drift in concentration that is most rapid for those tracers having the lowest diffusivities. If tracers are to be correctly conserved, either the kinematic boundary condition must explicitly allow advection across the interface, or the flux boundary condition must parameterize the effects of both vertical advection and diffusion in the boundary layer. In practice, the latter alternative is often implemented, although this is rarely done for all tracers.
Details
Publication status:
Published
Author(s):
Authors: Jenkins, Adrian ORCID record for Adrian Jenkins, Hellmer, Hartmut H., Holland, David M.
This website uses cookies to improve your experience. We'll assume you're okay with this, but you can opt-out if you wish.AcceptRead more
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.