The basal roughness of Pine Island Glacier, West Antarctica
We assess basal roughness beneath Pine Island Glacier (PIG), West Antarctica, based on a recent airborne radio-echo sounding dataset. We identify a clear relationship between faster ice flow and decreased basal roughness in significant parts of PIG. The central portion and two of its tributaries are particularly smooth, but the majority of the tributaries feeding the main trunk are rougher. We interpret the presence of a smooth bed as being a consequence of the deposition of marine sediments following disappearance of the West Antarctic ice sheet in the Pliocene or Pleistocene, and, conversely, a lack of marine sedimentation where the bed is rough. Importantly, we also identify a patchy distribution of marine sediments, and thus a bed over which the controls on flow vary. While there is a notable correspondence between ice velocity and bed roughness, we do not assume a direct causal relationship, but find that an indirect one is likely. Where low basal roughness results in low basal resistance to flow, a lower driving stress is required to produce the flux required to achieve mass balance. This, in turn, means that the surface in that area will be lower than surrounding areas with a rougher bed, and this will tend to draw flow into the area with low bed roughness. Since our studies shows that bed roughness beneath the tributaries of the trunk varies substantially, there is a strong likelihood that these tributaries will differ in the rate at which they transmit current velocity changes on the main trunk into the interior of the glacier basin.
Details
Publication status:
Published
Author(s):
Authors: Rippin, D.M., Vaughan, David G. ORCID record for David G. Vaughan, Corr, Hugh F.J.
This website uses cookies to improve your experience. We'll assume you're okay with this, but you can opt-out if you wish.AcceptRead more
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.