Subglacial bed properties from normal-incidence seismic reflection data
Recent applications of the normal-incidence seismic reflection technique to studying subglacial conditions are summarized. Some of the important aspects of the technique are discussed, including critical acquisition parameters and particular strengths and weaknesses. The main reason for deploying this technique, rather than other seismic methods, is that data acquisition is simpler and requires fewer resources. Current limitations of the technique include the inability to determine subglacial seismic velocities, uncertainty in the attenuation coefficient for ice, and assumptions of source repeatability. The reflection coefficient at the ice-bed interface is calculated from the energy reduction between primary and multiple reflections. From this, the acoustic impedance of the bed is derived and used to interpret the bed material. Beneath fast-flowing ice, dilatant, deforming sediment has been distinguished from a lodged sediment bed, using porosity as a proxy for sediment dilation. Subglacial water and permafrost have also been interpreted. Data from a number of locations can be used to develop a model of the basal conditions of a complete glacier. Results from sites on ice streams in West Antarctica show how the ice encounters a greater or lesser restraint to flow, from different basal conditions. Application to a glacier in the Arctic, suggests its most recent surge terminated when water escaped through discontinuous permafrost beneath the ice. Further glaciological questions that could be addressed using the technique are proposed.
Details
Publication status:
Published
Author(s):
Authors: Smith, Andrew M. ORCID record for Andrew M. Smith
This website uses cookies to improve your experience. We'll assume you're okay with this, but you can opt-out if you wish.AcceptRead more
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.