Spatial and temporal variation in the heat tolerance limits of two abundant Southern Ocean invertebrates
While, in lower latitudes, population-level differences in heat tolerance are linked to temperature variability, in the Southern Ocean remarkably stable year-round temperatures prevail. Temporal variation in the physiology of Antarctic ectotherms is therefore thought to be driven
by the intense seasonality in primary productivity. Here we tested for differences in the acute upper temperature limits (lethal and activity) of 2 Antarctic marine invertebrates (the omnivorous starfish Odontaster validus and the filter-feeding clam Laternula elliptica) across latitude, seasons and years. Acute thermal responses in the starfish (righting and feeding) and clam (burrowing)
differed between populations collected at 77° S (McMurdo Sound) and 67° S (Marguerite Bay). Both species displayed significantly higher temperature performance at 67° S, where seawater can reach a maximum of +1.8°C in summer versus −0.5°C at 77° S, showing that even the narrow
spatial and temporal variation in environmental temperature in Antarctica is biologically meaningful
to these stenothermal invertebrates. Temporal comparisons of heat tolerance also demonstrated seasonal differences in acute upper limits for survival that were consistent with physiological acclimatisation: lethal limits were lower in winter than summer and higher in warm years than
cool years. However, clams had greater inter-annual variation of temperature limits than was observed for starfish, suggesting that variation in food availability is also an important factor, particularly for primary consumers. Teasing out the interaction of multiple factors on thermal tolerance will be important for refining species-specific predictions of climate change impacts.
Details
Publication status:
Published
Author(s):
Authors: Morley, Simon ORCID record for Simon Morley, Martin, S.M., Bates, A.E., Clark, Melody ORCID record for Melody Clark, Ericson, J., Lamare, M., Peck, Lloyd
This website uses cookies to improve your experience. We'll assume you're okay with this, but you can opt-out if you wish.AcceptRead more
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.