Late Cenozoic glacier-volcano interaction on James Ross Island and adjacent areas, Antarctic Peninsula region
The northern Antarctic Peninsula region has undergone similar to 10 m.y. of eruptive activity by basaltic volcanoes, mainly in subglacial settings. Spectacular exposures of lava-fed deltas, capped by basalt flows and commonly underlain by glacigenic sediments on top of a Cretaceous sedimentary "basement," characterize James Ross, Vega, and other islands and promontories in the region. Neogene strata are collectively known as the James Ross Island Volcanic Group and record a cryptic history of glaciation, with the timing of events determinable by argon-isotope dating. Focusing especially on the glacigenic sediments themselves, and their relationships with overlying or bounding volcanic rocks, we define facies associations related to (1) eruptions beneath thick ice (>200 m) that produced lava-fed deltas resting on, and intermingling with, diamictite; and (2) eruptions under marine conditions that typically culminated in the development of several tuff-cone successions, some on top of presumably relict glacially striated surfaces. A combination of provenance studies on clasts in the glacigenic sediments, some of which are derived from the Antarctic Peninsula, and geochronology, leads to the conclusion that an Antarctic Peninsula Ice Sheet extended over James Ross and Vega Islands at about the time that the main volcanic edifices began to grow, i.e., prior to ca. 6.2 Ma at least. Much of the subsequent development of the succession is attributed to the interaction between the growing volcanoes and local ice caps. Full resolution of glacial-interglacial events in this region promises to inform the debate about the stability of the most climatically sensitive part of the Antarctic Ice Sheet during the Neogene Period.
Details
Publication status:
Published
Author(s):
Authors: Hambrey, Michael J., Smellie, John, Nelson, Anna E., Johnson, Joanne S. ORCID record for Joanne S. Johnson
This website uses cookies to improve your experience. We'll assume you're okay with this, but you can opt-out if you wish.AcceptRead more
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.