Effect of density on electrical conductivity of chemically laden polar ice
[1] Electrical conductivity measurements made using the dielectric profiling technique (DEP) are compared to chemical data from the top 350 m of the Dome C ice core in Antarctica. The chemical data are used to calculate the concentration of the major acidic impurities in the core: sulphuric acid and hydrochloric acid. The conductivity coefficients in solid ice for sulphuric acid (beta(H2SO4)) and hydrochloric acid (beta(HCl)) are found to be 4.9 and 4.5 S m(-1) M-1. These are consistent with previously found values for the acid conductivity coefficient at different sites and suggest that the same conductivity mechanisms are important in all polar ice. A method of rolling regression analysis is used to find the variation of the pure ice conductivity (sigma(infinity) pure) and the conductivity coefficient of sulphuric acid, beta(H2SO4), with depth. Then sigma(infinity) pure and beta(H2SO4) are assessed against changes in core density and hence volume fraction of ice, nu, due to the inclusion of air bubbles in the firn. Looyenga's model for dielectric mixtures applied to conduction in firn broadly predicts the variation observed in sigma(infinity) pure but does not fit well for ice above 110 m. A previous application of the theory of percolation in random lattices is used to model the conductivity coefficient in firn. The coefficient beta(H2SO4) is linked to nu by the power law: beta(H2SO4)(nu) proportional to beta(H2SO4) (1) (nu - nu(c))(t); where nu(c) is a threshold volume fraction below which no conduction can take place and is related to the geometry of the conducting lattice being modeled. The value of the exponent t is also dependent on the structure of the lattice and is here found to be t = 2.5, which is slightly lower than the previously obtained value of t = 2.7 for a structure where each grain has between 14 and 16 nearest neighbors. This model is consistent with the concept of conduction, via liquid H2SO4, taking place at two grain boundaries for firn. The model does not, however, preclude conduction taking place via acid situated at three grain boundaries or in an interconnected vein network at densities above 640 kg m(-3).
Details
Publication status:
Published
Author(s):
Authors: Barnes, P.R.F., Wolff, Eric W., Mulvaney, Robert ORCID record for Robert Mulvaney, Udisti, R., Castellano, E., Röthlisberger, R., Steffensen, J.-P.
This website uses cookies to improve your experience. We'll assume you're okay with this, but you can opt-out if you wish.AcceptRead more
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.