Basal freeze-on generates complex ice-sheet stratigraphy

Large, plume-like internal ice-layer-structures have been observed in radar images from both Antarctica and Greenland, rising from the ice-sheet base to up to half of the ice thickness. Their origins are not yet understood. Here, we simulate their genesis by basal freeze-on using numerical ice-flow modelling and analyse the transient evolution of the emerging ice-plume and the surrounding ice-layer structure as a function of both freeze-on rate and ice flux. We find good agreement between radar observations, modelled ice-plume geometry and internal layer structure, and further show that plume height relates primarily to ice-flux and only secondarily to freeze-on. An in-depth analysis, performed for Northern Greenland of observed spatial plume distribution related to ice flow, basal topography and water availability supports our findings regarding ice flux and suggests freeze-on is controlled by ascending subglacial water flow. Our results imply that widespread basal freeze-on strongly affects ice stratigraphy and consequently ice-core interpretations.


Publication status:
Authors: Leysinger Vieli, GJ-MC, Martin, Carlos ORCIDORCID record for Carlos Martin, Hindmarsh, Richard ORCIDORCID record for Richard Hindmarsh, Lüthi, MP

On this site: Carlos Martin Garcia, Richard Hindmarsh, Richard Hindmarsh
7 November, 2018
Nature Communications / 9
Digital Object Identifier (DOI):