Assessment of Southern Ocean mixed-layer depth in CMIP5 models: historical bias and forcing response
The development of the deep Southern Ocean winter mixed layer in the climate models participating in the fifth Coupled Models Intercomparison Project (CMIP5) is assessed. The deep winter convection regions are key to the ventilation of the ocean interior, and changes in their properties have been related to climate change in numerous studies. Their simulation in climate models is consistently too shallow, too light and shifted equatorward compared to observations. The shallow bias is mostly associated with an excess annual-mean freshwater input at the sea surface that over-stratifies the surface layer and prevents deep convection from developing in winter. In contrast, modeled future changes are mostly associated with a reduced heat loss in winter that leads to even shallower winter mixed layers. The mixed layers shallow most strongly in the Pacific basin under future scenarios, and this is associated with a reduction of the ventilated water volume in the interior. We find a strong state dependency for the future change of mixed-layer depth, with larger future shallowing being simulated by models with larger historical mixed-layer depths. Given that most models are biased shallow, we expect that most CMIP5 climate models might underestimate the future winter mixed-layer shallowing, with important implications for the sequestration of heat, and gases such as carbon dioxide, and therefore for climate.
Details
Publication status:
Published
Author(s):
Authors: Sallee, J.-B., Shuckburgh, E. ORCID record for E. Shuckburgh, Bruneau, N., Meijers, A.J.S. ORCID record for A.J.S. Meijers, Bracegirdle, T.J. ORCID record for T.J. Bracegirdle, Wang, Z.
This website uses cookies to improve your experience. We'll assume you're okay with this, but you can opt-out if you wish.AcceptRead more
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.