Sat Risk

Satellite Radiation Risk Forecasts (Sat-Risk) N1

Start date
1 May, 2020
End date
1 May, 2024

Sat-Risk – Satellite Radiation Risk Forecasts – is a collaborative project between several academic institutions and stakeholders. The project is part of the Space Weather Instrumentation, Measurement, Modelling and Risk (SWIMMR) programme led by the Science and Technology Facilities Council (STFC) with the Natural Environment Research Council (NERC). The aim of SWIMMR to improve the UK’s capabilities for space weather monitoring and prediction.

The Sat-Risk project, led by the British Antarctic Survey (BAS), has the goal of ‘developing a real-time system to forecast radiation exposure to satellites for a range of different orbits, and quantify the risk of damage or degradation‘. Further information can be found at Satellite Radiation Risk Forecasts (


Satellites are incredibly important to modern life on Earth. There are currently more than 2500 operational satellites orbiting the Earth with applications including, but not limited to, mobile phone networks, TV signals, internet, navigation, and weather forecasting. All of these satellites must be designed to withstand the harsh environment of space for lifetimes that can be as long as 15 years or more. One particular danger is that of radiation. Many satellites pass through the Van Allen radiation belts during their orbits; regions of energetic particles trapped by the Earth’s magnetic field. This radiation can be incredibly damaging to electronic components such as solar cells, integrated circuits, and sensors.

During magnetic storms the electron flux inside the radiation belts can display great variability, increasing by up to four orders of magnitude on a timescales of minutes to days. The flux can also decrease though this usually takes place more slowly over a period of several days.

It is important to satellite designers and operators to be able to predict how the radiation belts are likely to behave in response to solar activity. Satellites often have to change their mode of operation at times when there is a high risk of damage due to radiation, for example delaying updates, rescheduling manoeuvres, and requiring increased staff monitoring. As such it is of interest to develop a system to forecast how the radiation in the Van Allen radiation belts will change, and to inform operators of dangers to satellites to reduce damage. Developing such a system is the key aim of the Sat-Risk project.




  1. Meredith, N. P., Cayton, T. E., Cayton, M. D., & Horne, R. B(2023). Extreme relativistic electron fluxes in GPS orbit: Analysis of NS41 BDD-IIR data. Space Weather21, e2023SW003436.


  1. Brown, E. J. E., Svoboda, F., Meredith, N. P., Lane, N., & Horne, R. B. (2022). Attention-based machine vision models and techniques for solar wind speed forecasting using solar EUV images. Space Weather20, e2021SW002976.
  2. Meredith, N. P., Cunio, K., Scarborough, D., & Wynne, A. D. (2022) Music of the spheres, Astronomy & Geophysics, Volume 63, Issue 1, Pages 1.38–1.40,
  3. Wong, J.-M., Meredith, N. P., Horne, R. B., Glauert, S. A., & Ross, J. P. J. (2022). Electron diffusion by magnetosonic waves in the Earth’s radiation belts. Journal of Geophysical Research: Space Physics127, e2021JA030196.
  4. Xia, Z., Chen, L., Horne, R. B., & Bortnik, J. (2022). Whistler waves above the lower hybrid frequency in the ionosphere and their counterparts in the magnetosphere. Geophysical Research Letters49, e2022GL098294.
  5. Walton, S. D., Forsyth, C., Rae, I. J., Meredith, N. P., Sandhu, J. K., Walach, M.-T., & Murphy, K. R. (2022). Statistical comparison of electron loss and enhancement in the outer radiation belt during storms. Journal of Geophysical Research: Space Physics127, e2021JA030069.
  6. Bernhardt, P. A., Hua, M., Bortnik, J., Ma, Q., Verronen, P. T., McCarthy, M. P., Hampton, D. L., Golkowski, M., Cohen, M. B., Richardson, D. K., Howarth, A. D., James, H. G., Meredith, N. P. (2022). Active precipitation of radiation belt electrons using rocket exhaust driven amplification (REDA) of man-made whistlers. Journal of Geophysical Research: Space Physics127, e2022JA030358.
  7. Daggitt, T. A., Horne, R. B., Glauert, S. A., Del Zanna, G., & Freeman, M. P. (2022). Variations in observations of geosynchronous magnetopause and last closed drift shell crossings with magnetic local time. Space Weather20, e2022SW003105.
  8. Ross, J. P. J., Glauert, S. A., Horne, R. B., & Meredith, N. P. (2022). The importance of ion composition for radiation belt modeling. Journal of Geophysical Research: Space Physics127, e2022JA030680.
  9. Watt, C. E. J., Allison, H. J., Bentley, S. N., Thompson, R. L., Rae, I. J., Allanson, O., Meredith, N. P., Ross, J. P. J., Glauert, S. A., Horne, R. B., Zhang, S., Murphy, K. R., Rasinskaitė, D. & Killey, S. (2022). Temporal variability of quasi-linear pitch-angle diffusion. Frontiers in Astronomy and Space Sciences9, 1004634.
  10. Longley, W. J., Chan, A. A., Jaynes, A. N., Elkington, S. R., Pettit, J. M., Ross, J. P. J., Glauert, S. A. & Horne, R. B. (2022). Using MEPED observations to infer plasma density and chorus intensity in the radiation belts. Frontiers in Astronomy and Space Sciences, 9, 1063329.


  1. Meredith, N. P., Bortnik, J., Horne, R. B., Li, W., & Shen, X.-C. (2021). Statistical investigation of the frequency dependence of the chorus source mechanism of plasmaspheric hiss. Geophysical Research Letters48, e2021GL092725.
  2. Gu, W., Chen, L., Xia, Z., & Horne, R. B. (2021). Direct evidence reveals transmitter signal propagation in the magnetosphere. Geophysical Research Letters48, e2021GL093987.
  3. Liu, X., Gu, W., Xia, Z., Chen, L., & Horne, R. B. (2021). Frequency-dependent modulation of whistler-mode waves by density irregularities during the recovery phase of a geomagnetic storm. Geophysical Research Letters48, e2021GL093095.
  4. Desai, R. T., Freeman, M. P., Eastwood, J. P., Eggington, J. W. B., Archer, M. O., Shprits, Y. Y., et al. (2021). Interplanetary shock-induced magnetopause motion: Comparison between theory and global magnetohydrodynamic simulations. Geophysical Research Letters48, e2021GL092554.
  5. Desai, R. T., Eastwood, J. P., Horne, R. B., Allison, H. J., Allanson, O., Watt, C. E. J., et al. (2021). Drift orbit bifurcations and cross-field transport in the outer radiation belt: Global MHD and integrated test-particle simulations. Journal of Geophysical Research: Space Physics126, e2021JA029802.
  6. Walton, S. D., Forsyth, C., Rae, I. J., Watt, C. E. J., Thompson, R. L., Horne, R. B., et al. (2021). Cross- L* coherence of the outer radiation belt during storms and the role of the plasmapause. Journal of Geophysical Research: Space Physics126, e2021JA029308.
  7. Chen, L., Zhang, X.-J., Artemyev, A., Zheng, L., Xia, Z., Breneman, A.W. and Horne, R. B. (2021). Electron Microbursts Induced by Nonducted Chorus Waves. Frontiers in Astronomy and Space Sciences8, 745927.
  8. Lozinski, A. R., Horne, R. B., Glauert, S. A., Del Zanna, G., & Claudepierre, S. G. (2021). Modeling inner proton belt variability at energies 1 to 10 MeV using BAS-PRO. Journal of Geophysical Research: Space Physics126, e2021JA029777.