Subduction erosion of forearc mantle wedge implicated in the genesis of the South Sandwich Island (SSI) arc: Evidence from boron isotope systematics
The South Sandwich volcanic arc is sited on a young oceanic crust, erupts low-K tholeiitic rocks, is characterized by unexotic pelagic and volcanogenic sediments on the down-going slab, and simple tectonic setting, and is ideal for assessing element transport through subduction zones. As a means of quantifying processes attending transfer of subduction-related fluids from the slab to the mantle wedge, boron concentrations and isotopic compositions were determined for representative lavas from along the arc. The samples show variable fluid-mobile/fluid-immobile element ratios and high enrichments of B/Nb (2.7 to 55) and B/Zr (0.12 to 0.57), similar to those observed in western Pacific arcs. δ11B values are among the highest so far reported for mantle-derived lavas; these are highest in the central part of the arc (+ 15 to + 18‰) and decrease toward the southern and northern ends (+ 12 to + 14‰). δ11B is roughly positively correlated with B concentrations and with 87Sr/86Sr ratios, but poorly coupled with other fluid-mobile elements such as Rb, Ba, Sr and U. Peridotites dredged from the forearc trench also have high δ11B (ca. + 10‰) and elevated B contents (38–140 ppm). Incoming pelagic sediments sampled at ODP Site 701 display a wide range in δ11B (+ 5 to − 13‰; average = − 4.1‰), with negative values most common. The unusually high δ11B values inferred for the South Sandwich mantle wedge cannot easily be attributed to direct incorporation of subducting slab materials or fluids derived directly therefrom. Rather, the heavy B isotopic signature of the magma sources is more plausibly explained by ingress of fluids derived from subduction erosion of altered frontal arc mantle wedge materials similar to those in the Marianas forearc. We propose that multi-stage recycling of high-δ11B and high-B serpentinite (possibly embellished by arc crust and volcaniclastic sediments) can produce extremely 11B-rich fluids at slab depths beneath the volcanic arc. Infiltration of such fluids into the mantle wedge likely accounts for the unusual magma sources inferred for this arc.
Details
Publication status:
Published
Author(s):
Authors: Tonarini, Sonia, Leeman, William P., Leat, Philip T.
This website uses cookies to improve your experience. We'll assume you're okay with this, but you can opt-out if you wish.AcceptRead more
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.