Solar-wind-driven geopotential height anomalies originate in the Antarctic lower troposphere
We use National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data to estimate the altitude and time lag dependence of the correlation between the interplanetary magnetic field component, By, and the geopotential height anomaly above Antarctica. The correlation is most statistically significant within the troposphere. The peak in the correlation occurs at greater time lags at the tropopause (∼6–8 days) and in the midtroposphere (∼4 days) than in the lower troposphere (∼1 day). This supports a mechanism involving the action of the global atmospheric electric circuit, modified by variations in the solar wind, on lower tropospheric clouds. The increase in time lag with increasing altitude is consistent with the upward propagation by conventional atmospheric processes of the solar wind-induced variability in the lower troposphere. This is in contrast to the downward propagation of atmospheric effects to the lower troposphere from the stratosphere due to solar variability-driven mechanisms involving ultraviolet radiation or energetic particle precipitation.
Details
Publication status:
Published
Author(s):
Authors: Lam, Mai Mai, Chisham, Gareth ORCID record for Gareth Chisham, Freeman, Mervyn ORCID record for Mervyn Freeman
This website uses cookies to improve your experience. We'll assume you're okay with this, but you can opt-out if you wish.AcceptRead more
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.