Plasticity in shell morphology and growth among deep-sea protobranch bivalves of the genus Yoldiella (Yoldiidae) from contrasting Southern Ocean regions
The ecology of Antarctic deep-sea fauna is poorly understood and few studies have gone beyond assessing biodiversity when comparing deep regions of the Southern Ocean. Protobranch bivalves are ubiquitous in the deep ocean and are widely distributed in the Southern Ocean. This paper examines the potential respon ses to environmental differences in the common protobranchs Yoldiella valettei, Yoldiella ecaudata, and Yoldiella sabrina from contrasting deep-sea environments of the Weddell Sea, Scotia Sea, Amundsen Sea, and South Atlantic. There are significant differences in morphology between deep-sea regions in all species and a significant difference in shell weight in Y. valettei between the Amundsen Sea and Weddell Seas. Growth rates of Y. valettei and Y. ecaudata in the Amundsen Sea are also higher than elsewhere and Y. valettei have heaviest shells in the Amundsen Sea, suggesting more favourable conditions for calcification and growth. The plasticity observed among deep-sea regions in the Southern Ocean is likely to be driven by different oceanographic influences affecting temperature and food fluxes to the benthos, and demonstrate the species’ ability to differentially adapt between cold-stenothermal environments. This study suggests that subtle changes in the environment may lead to a divergence in the ecology of invertebrate populations and showcases the protobranch bivalves as a future model group for the study of speciation and radiation processes through cold-stenothermal environments.
Details
Publication status:
Published
Author(s):
Authors: Reed, Adam J., Morris, James P., Linse, Katrin ORCID record for Katrin Linse, Thatje, Sven
This website uses cookies to improve your experience. We'll assume you're okay with this, but you can opt-out if you wish.AcceptRead more
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.