Orthomagmatic quartz and post-magmatic carbonate veins in a reported porphyry copper deposit, Andean Intrusive Suite, Livingston Island, South Shetland Islands

A previously reported porphyry Cu + Mo deposit in an Eocene pluton within the South Shetland Island magmatic arc has been re-interpreted as three distinct hydrothermal assemblages. The oldest assemblage (1) exsolved under confinement from the deep (∼6 km?) cooling magma whereas assemblages (2) and (3) formed during tectonic ± magmatic episodes at depths of < 1.5 km in the late Cenozoic. The three assemblages occur over the 5 × 11 km mapped in Barnard Point tonalite pluton. Assemblage (1) comprises shallowly dipping sheets of aplite, biotite + tourmaline pegmatite, massive ‘grey’ quartz, and quartz + tourmaline + bornite + chalcopyrite + molybdenite veins. Magnetite + tourmaline + chalcopyrite breccias have associated biotite, K-feldspar and muscovite alteration. Fluid inclusions indicate formation from hot (∼600°C), saline (40 equivalent weight % NaCl + CaCl2) aqueous-carbonic fluids that exsolved from the partly consolidated magma. The primary control on solution chemistry and nature of fracturing was the depth of pluton emplacement. Assemblage (2) consists of steep, vuggy veins and country-rock breccias, with thick propylitic alteration selvages, cemented by microcrystalline quartz, complex inter-growths of FeMg carbonate, bladed barite and trace amounts of bornite and chalcopyrite. These rocks, previously described as breccia (sensu ‘pebble’) dykes in the porphyry complex, are reinterpreted as an influx of moderately hot (175–330°C), weak to moderately saline (2–21 EWP NaCl), aqueous-carbonic fluids that underwent isobaric boiling at 0.8 to 1.3 km depth. Assemblage (3) consists of thin, hematitic fault infillings formed during a second episode of brittle faulting


Publication status:
Authors: Armstrong, D. C., Willan, R. C. R.

1 May, 1996
Mineralium Deposita / 31
Link to published article: