Movements and burrowing activity in the Antarctic bivalve molluscs Laternula elliptica and Yoldia eightsi

Burrowing was investigated in two Antarctic infaunal bivalve molluscs, Laternula elliptica and Yoldia eightsi, representing amongst the least and most active members of the class Bivalvia in the Southern Ocean. Burrowing rate was expressed via the Burrowing Rate Index (BRI=[(3)rootwet weight/time to bury]x10(4)), and produced values of 0.1-10.6 for L. elliptica and 8.8-49.8 for Y. eightsi. These compare with values ranging from 3 to 2,000 for N. American bivalves (mean=222, SE=42.6, n=81), and 200 to 2,200 for Hong Kong bivalves (mean=1,140, SE=346, n=6). Values for the Antarctic species are, therefore, low compared to warmer-water bivalves, and the values below 1 for large L. elliptica are the lowest on record by around x5. There is no compensation of burrowing activity for low temperature in these species. The relative BRI values for L. elliptica and Y. eightsi reflect the differences in their mode of life, with the former being large, sedentary and suspension-feeding, and the latter being smaller, mobile, ploughing through the sediment and feeding on sediment-surface organic matter. Burrowing in L. elliptica is unexpected, because other members of the Laternulidae do not burrow. This ability is most probably a response to the regular disturbance of sediments in Antarctica by ice, and the strong selective advantage to being able to resume a protected position after disturbance. The burrowing cycle in L. elliptica is composed of three main phases: (1) foot extension and sediment penetration; (2) foot dilation to form an anchor; (3) the drawing down of the shell by contraction of the pedal retractor muscles. Burrowing in Y. eightsi also has three phases: (1) foot extension and penetration of the sediment (digging); (2) rocking movements in the upright position; (3) shell anchorage. In excess of burrowing activity, L. elliptica exhibits a unique suite of movements when exposed at the surface. These comprise levering, where the tips of the siphons are pressed against the sediment to lift the shell from the substratum, looping, where the siphons are extended and rotated and, in the process, translocate the whole animal across the sediment, and jetting, where water is ejected forcibly through the siphons while their tips are directed towards the sediment, lifting part or all of the animal clear of the substratum. In the field, following exhumation by icebergs, these activities serve to place the animal in a favourable position for reburial, which is a clear advantage in disturbed polar environments where predatory nemerteans and asteroids are abundant.


Publication status:
Authors: Peck, Lloyd S. ORCIDORCID record for Lloyd S. Peck, Ansell, Alan D., Webb, Karen E., Hepburn, Leanne, Burrows, Michael

On this site: Lloyd Peck
1 January, 2004
Polar Biology / 27
Link to published article: