Life cycle strategies of epipelagic copepods in the Southern Ocean

Twelve epipelagic copepod species were reviewed to compare their adaptations to the short primary production season and low temperatures which characterise the Southern Ocean. The species show a spectrum of adaptations, but three broad life cycle strategies were defined: (1) herbivorous in summer, a short reproductive period and winter diapause at depth (Calanoides acutus and possibly Ctenocalanus citer); (2) predominantly omnivorous/detritivorous diet, an extended period of feeding, growth and reproduction and less reliance on diapause at depth (Metridia gerlachei, Calanus propinquus, Calanus simillimus, Oithona similis, Microcalanus pygmaeus, and possibly Oncaea curvata and Oithona frigida); (3) overwintering and feeding within sea ice as early nauplii or copepodids (Stephos longipes and Paralabidocera antarctica). The large species Rhincalanus gigas appears to be intermediate between strategies (1) and (2). Contrasting species from groups (1) and (2), namely C. acutus and O. similis, were selected for more detailed comparison. For C. acutus, maximum (probably food saturated) feeding and egg production rates are well below equivalent values for Calanus spp. at lower latitudes. Likewise, summer growth and moulting rates are slower, and the growth season of this herbivore is only 2–4 months. Therefore, both the low summer temperatures and short primary production season seem to dictate a long (∼1 year) life cycle for C. acutus. A collation of data on O. similis revealed that its abundance increases about tenfold from the Antarctic shelf northwards to the Polar Frontal Zone, where abundances are similar to those in temperate and tropical shelf seas. In contrast to C. acutus, O. similis appears to remain in the epipelagic and reproduce there year-round, although the food sources which sustain this are still uncertain.

Details

Publication status:
Published
Author(s):
Authors: Atkinson, Angus

Date:
1 January, 1998
Journal/Source:
Journal of Marine Systems / 15
Page(s):
289-311
Link to published article:
https://doi.org/10.1016/S0924-7963(97)00081-X