Ground observations of chorus following geomagnetic storms

[1] It has been suggested that whistler mode chorus waves play a role in acceleration and loss of radiation belt electrons during geomagnetic storms. In this paper we present data from a complete solar cycle ( 1992 - 2002) of nearly continuous (> 95%) VLF/ELF observations from the VLF/ELF Logger Experiment (VELOX) instrument at Halley station, Antarctica (76 degreesS, 27 degreesW, L = 4.3), to determine whether there is statistical evidence for enhanced whistler mode chorus waves during geomagnetic storms. The data comprise 1 s resolution measurements of ELF/VLF wave power in eight frequency bands from 500 Hz to 10 kHz. The variations in chorus activity during several storms, including the well-studied Bastille Day event ( 14 July 2000), show enhanced wave power but are variable from event to event. The average behavior has been found from a superposed epoch analysis using 372 storms with minimum Dst less than - 50 nT, including 82 large storms with minimum Dst less than - 100 nT. Compared with average prestorm levels, the chorus intensity decreases in the storm main phase but is enhanced in the recovery phase, typically maximizing a day after the storm onset. At 1 kHz the enhancement is independent of storm severity, suggesting a saturation effect, whereas larger storms produce larger wave intensities at higher frequencies in the chorus band ( e. g., 3 kHz), which is interpreted as the effect of a chorus source region located on lower L shells than for weaker storms. The storm chorus enhancement maximizes at postdawn local times, leading to a 24 hour recurrence effect. A long-enduring depression in wave intensities, of 10 days or more, is found near the top of the normal chorus band ( similar to 5 kHz). We suggest that this is due to precipitation from enhanced relativistic particle fluxes affecting the subionospheric propagation of spherics from nearby thunderstorm regions across the L = 2 - 4 zone.

Details

Publication status:
Published
Author(s):
Authors: Smith, A.J., Horne, R.B. ORCIDORCID record for R.B. Horne, Meredith, N.P. ORCIDORCID record for N.P. Meredith

On this site: Nigel Meredith, Richard Horne
Date:
1 January, 2004
Journal/Source:
Journal of Geophysical Research / 109
Digital Object Identifier (DOI):
https://doi.org/10.1029/2003JA010204