Dynamical drivers of the local wind regime in a Himalayan valley

Understanding the local valley wind regimes in the Hindu‐Kush Karakoram Himalaya is vital for future predictions of the glacio‐hydro‐meteorological system. Here the Weather Research and Forecasting model is employed at a resolution of 1 km to investigate the forces driving the local valley wind regime in a river basin in the Nepalese Himalaya, during July 2013 and January 2014. Comparing with observations shows that the model represents the diurnal cycle of the winds well, with strong daytime up‐valley winds and weak nighttime winds in both months. A momentum budget analysis of the model output shows that in the summer run the physical drivers of the near‐surface valley wind also have a clear diurnal cycle, and are dominated by the pressure gradient, advection, and turbulent vertical mixing, as well as a non‐physical numerical diffusion term. By contrast, the drivers in the winter run have a less consistent diurnal cycle. In both months, the pressure gradient, advection, numerical diffusion and Coriolis terms dominate up to 5000 m above the ground. The drivers are extremely variable over the valley, and also influenced by the presence of glaciers. When glaciers are removed from the model in the summer run, the wind continues further up the valley, indicating how the local valley winds might respond to future glacier shrinkage. The spatial variability of the drivers over both months is consistent with the complex topography in the basin, which must therefore be well represented in weather and regional climate models to generate accurate outputs.


Publication status:
Authors: Potter, Emily R., Orr, Andrew, Willis, Ian C., Bannister, Daniel, Salerno, Franco

On this site: Andrew Orr, Emily Potter, Emily Potter
12 November, 2018
Journal of Geophysical Research: Atmospheres / 123
Digital Object Identifier (DOI):