Analysis of James Ross Island volcanic complex and sedimentary basin based on high-resolution aeromagnetic data
High-resolution aeromagnetic surveys provide a geophysical tool to help image the subsurface structure of volcanoes and their tectonic framework. Here we interpret high-resolution aeromagnetic data and models for James Ross archipelago and surrounding regions to provide a new perspective on Neogene magmatism emplaced along the eastern margin of the Antarctic Peninsula. Based on the analysis and modelling of magnetic anomalies we were able to image the subglacial extent of Miocene to Recent alkaline rocks of the James Ross Island Volcanic Group and map tectonic structures that appear to have exerted important controls on Neogene magmatism. High-amplitude linear anomalies detected over Mount Haddington stratovolcano were modelled as caused by subvertical feeder bodies extending to a depth of at least 3 km. These feeder bodies may have been emplaced along a N–S oriented volcano-tectonic rift zone.We also identified several effusive subglacial centres and imaged two concentric magnetic arcs, which we related to Neogene volcanic and subvolcanic lineaments, likely controlled by Mid-Cretaceous strike-slip fault belts and associated deformation zones. The regional magnetic quiet zone that encompasses James Ross Island is caused by the thick sedimentary infill of the Larsen Basin, and a low-amplitude magnetic high within the basin is inferred to reflect a basement push-up structure associated with strike-slip faulting along the eastern edge of the Antarctic Peninsula.In the offshore regions magnetic anomalies southwest of Tabarin Peninsula and west of Vega Island may reflect recent volcanic structures that have yet to emerge from the sea-floor.
Details
Publication status:
Published
Author(s):
Authors: Ghidella, M.E., Zambrano, O.M., Ferraccioli, F., Lirio, J.M., Zakrajsek, A.F., Ferris, J., Jordan, T.A. ORCID record for T.A. Jordan
This website uses cookies to improve your experience. We'll assume you're okay with this, but you can opt-out if you wish.AcceptRead more
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.