An 18‐year climatology of directional stratospheric gravity wave momentum flux from 3‐D satellite observations
Atmospheric gravity waves (GWs) are key drivers of the atmospheric circulation, but their representation in general circulation models (GCMs) is challenging, leading to significant biases in middle atmospheric circulations. Unresolved GW momentum transport in GCMs must be parameterised, but global directional GW observations are needed to constrain this. Here we present an 18‐year climatology of directional stratospheric GW momentum flux (GWMF) from global AIRS/Aqua 3‐D satellite observations during 2002 to 2019. Striking hemispheric asymmetries are found at high latitudes, including dramatic reductions and reversals of GWMF during sudden stratospheric warmings. During southern hemisphere winter, a lateral convergence of GWMF towards 60°S is found that has no northern hemisphere counterpart. In the tropics, we find that zonal GWMF in AIRS measurements is strongly modulated by the semi‐annual oscillation (SAO) but not the quasi‐biennial oscillation (QBO). Our results provide guidance for future GW parameterisations needed to resolve long‐standing biases in GCMs.
Details
Publication status:
Published
Author(s):
Authors: Hindley, N. P., Wright, C. J., Moffat-Griffin, Tracy ORCID record for Tracy Moffat-Griffin, Mitchell, N. J.
This website uses cookies to improve your experience. We'll assume you're okay with this, but you can opt-out if you wish.AcceptRead more
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.