Systematic behaviour of 3He/4He in Earth’s continental mantle
Helium isotopes are unrivalled tracers of the origins of melts in the Earth’s convecting mantle but their role in determining melt contributions from the shallower and rigid lithospheric mantle is more ambiguous. We have acquired new 3He/4He data for olivine and pyroxene separates from 47 well-characterised mantle xenoliths from global on- and off-craton settings. When combined with existing data they demonstrate a new systematic relationship between fluid-hosted 3He/4He and major and trace element composition of host minerals and whole rock. We show that a significant proportion (>70 %) of mantle peridotites from continental off-craton settings with depleted major element compositions (e.g., olivine Mg# ≥ 89.5) have 3He/4He in the range of modern-day mid-ocean ridge basalt (MORB) source mantle (7–9 Ra) and we propose that they represent underplated melt residues, which initially formed in the convecting upper mantle. Furthermore, we observe that off-craton mantle xenoliths with signatures often attributed to enrichment by melts or fluids from ‘ancient’ subducted oceanic lithosphere have lower 3He/4He (<7 Ra). Modest correlations between 3He/4He and whole rock incompatible trace element signatures commonly used as proxies for metasomatism by small-fraction carbonatite and silicate melts or C-O-H fluids characterise lithospheric mantle with 3He/4He ranging from 5 to 8 Ra. [...]
Details
Publication status:
Published Online
Author(s):
Authors: Gibson, S.A., Crosby, J.C., Day, J.A.F., Stuart, F.M., DiNicola, L., Riley, T.R. ORCID record for T.R. Riley