Timescale for MeV electron microburst loss during geomagnetic storms

Energetic electrons in the outer radiation belt can resonate with intense bursts of whistler-mode chorus emission leading to microburst precipitation into the atmosphere. The timescale for removal of outer zone MeV electrons during the main phase of the October 1998 magnetic storm has been computed by comparing the rate of microburst loss observed on SAMPEX with trapped flux levels observed on Polar. Effective lifetimes are comparable to a day and are relatively independent of L shell. The lifetimes have also been evaluated by theoretical calculations based on quasi-linear scattering by field-aligned waves. Agreement with the observations requires average wide-band wave amplitudes comparable to 100 pT, which is consistent with the intensity of chorus emissions observed under active conditions. MeV electron scattering is most efficient during first-order cyclotron resonance with chorus emissions at geomagnetic latitudes above 30 degrees. Consequently, the zone of MeV microbursts tends to maximize in the prenoon (0400–1200 MLT) sector, since nightside chorus is more strongly confined to the equator.

Details

Publication status:
Published
Author(s):
Authors: Thorne, R.M., O'Brien, T.P., Shprits, Y.Y., Summers, D., Horne, R.B. ORCIDORCID record for R.B. Horne

On this site: Richard Horne
Date:
1 January, 2005
Journal/Source:
Journal of Geophysical Research / 110
Page(s):
7pp
Link to published article:
https://doi.org/10.1029/2004JA010882